PrusaArduinoBoards/IDE_Board_Manager/prusa3dboards/bootloaders/prusa_einsy_rambo/stk500boot.c
2019-11-29 22:06:19 +01:00

1563 lines
42 KiB
C

/*****************************************************************************
Title: STK500v2 compatible bootloader
Modified for Wiring board ATMega128-16MHz
Author: Peter Fleury <pfleury@gmx.ch> http://jump.to/fleury
Compiler: avr-gcc 3.4.5 or 4.1 / avr-libc 1.4.3
Hardware: All AVRs with bootloader support, tested with ATmega8
License: GNU General Public License
Modified: Worapoht Kornkaewwattanakul <dev@avride.com> http://www.avride.com
Date: 17 October 2007
Update: 1st, 29 Dec 2007 : Enable CMD_SPI_MULTI but ignore unused command by return 0x00 byte response..
Compiler: WINAVR20060421
Description: add timeout feature like previous Wiring bootloader
DESCRIPTION:
This program allows an AVR with bootloader capabilities to
read/write its own Flash/EEprom. To enter Programming mode
an input pin is checked. If this pin is pulled low, programming mode
is entered. If not, normal execution is done from $0000
"reset" vector in Application area.
Size fits into a 1024 word bootloader section
when compiled with avr-gcc 4.1
(direct replace on Wiring Board without fuse setting changed)
USAGE:
- Set AVR MCU type and clock-frequency (F_CPU) in the Makefile.
- Set baud rate below (AVRISP only works with 115200 bps)
- compile/link the bootloader with the supplied Makefile
- program the "Boot Flash section size" (BOOTSZ fuses),
for boot-size 1024 words: program BOOTSZ01
- enable the BOOT Reset Vector (program BOOTRST)
- Upload the hex file to the AVR using any ISP programmer
- Program Boot Lock Mode 3 (program BootLock 11 and BootLock 12 lock bits) // (leave them)
- Reset your AVR while keeping PROG_PIN pulled low // (for enter bootloader by switch)
- Start AVRISP Programmer (AVRStudio/Tools/Program AVR)
- AVRISP will detect the bootloader
- Program your application FLASH file and optional EEPROM file using AVRISP
Note:
Erasing the device without flashing, through AVRISP GUI button "Erase Device"
is not implemented, due to AVRStudio limitations.
Flash is always erased before programming.
AVRdude:
Please uncomment #define REMOVE_CMD_SPI_MULTI when using AVRdude.
Comment #define REMOVE_PROGRAM_LOCK_BIT_SUPPORT to reduce code size
Read Fuse Bits and Read/Write Lock Bits is not supported
NOTES:
Based on Atmel Application Note AVR109 - Self-programming
Based on Atmel Application Note AVR068 - STK500v2 Protocol
LICENSE:
Copyright (C) 2006 Peter Fleury
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
*****************************************************************************/
//************************************************************************
//* Edit History
//************************************************************************
//* Jul 7, 2010 <MLS> = Mark Sproul msproul@skycharoit.com
//* Jul 7, 2010 <MLS> Working on mega2560. No Auto-restart
//* Jul 7, 2010 <MLS> Switched to 8K bytes (4K words) so that we have room for the monitor
//* Jul 8, 2010 <MLS> Found older version of source that had auto restart, put that code back in
//* Jul 8, 2010 <MLS> Adding monitor code
//* Jul 11, 2010 <MLS> Added blinking LED while waiting for download to start
//* Jul 11, 2010 <MLS> Added EEPROM test
//* Jul 29, 2010 <MLS> Added recchar_timeout for timing out on bootloading
//* Aug 23, 2010 <MLS> Added support for atmega2561
//* Aug 26, 2010 <MLS> Removed support for BOOT_BY_SWITCH
//* Sep 8, 2010 <MLS> Added support for atmega16
//* Nov 9, 2010 <MLS> Issue 392:Fixed bug that 3 !!! in code would cause it to jump to monitor
//* Jun 24, 2011 <MLS> Removed analogRead (was not used)
//* Dec 29, 2011 <MLS> Issue 181: added watch dog timmer support
//* Dec 29, 2011 <MLS> Issue 505: bootloader is comparing the seqNum to 1 or the current sequence
//* Jan 1, 2012 <MLS> Issue 543: CMD_CHIP_ERASE_ISP now returns STATUS_CMD_FAILED instead of STATUS_CMD_OK
//* Jan 1, 2012 <MLS> Issue 543: Write EEPROM now does something (NOT TESTED)
//* Jan 1, 2012 <MLS> Issue 544: stk500v2 bootloader doesn't support reading fuses
//************************************************************************
//************************************************************************
//* these are used to test issues
//* http://code.google.com/p/arduino/issues/detail?id=505
//* Reported by mark.stubbs, Mar 14, 2011
//* The STK500V2 bootloader is comparing the seqNum to 1 or the current sequence
//* (IE: Requiring the sequence to be 1 or match seqNum before continuing).
//* The correct behavior is for the STK500V2 to accept the PC's sequence number, and echo it back for the reply message.
#define _FIX_ISSUE_505_
//************************************************************************
//* Issue 181: added watch dog timmer support
#define _FIX_ISSUE_181_
// LCD startup screen and boot animation
#define LCD_HD44780
#define LCD_HD44780_ANIMATION
#define LCD_HD44780_COUNTER
// Dual serial support
#define DUALSERIAL
// EINSY board
#define EINSYBOARD
#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/boot.h>
#include <avr/pgmspace.h>
#include <util/delay.h>
#include <avr/eeprom.h>
#include <avr/common.h>
#include "command.h"
#ifdef LCD_HD44780
#include "lcd.h"
#endif
#ifndef EEWE
#define EEWE 1
#endif
#ifndef EEMWE
#define EEMWE 2
#endif
/*
* Uncomment the following lines to save code space
*/
//#define REMOVE_PROGRAM_LOCK_BIT_SUPPORT // disable program lock bits
//#define REMOVE_BOOTLOADER_LED // no LED to show active bootloader
//#define REMOVE_CMD_SPI_MULTI // disable processing of SPI_MULTI commands, Remark this line for AVRDUDE <Worapoht>
//
//************************************************************************
//* LED on pin "PROGLED_PIN" on port "PROGLED_PORT"
//* indicates that bootloader is active
//* PG2 -> LED on Wiring board
//************************************************************************
#define BLINK_LED_WHILE_WAITING
#ifdef _MEGA_BOARD_
#define PROGLED_PORT PORTB
#define PROGLED_DDR DDRB
#define PROGLED_PIN PINB7
#elif defined( _BOARD_AMBER128_ )
//* this is for the amber 128 http://www.soc-robotics.com/
//* onbarod led is PORTE4
#define PROGLED_PORT PORTD
#define PROGLED_DDR DDRD
#define PROGLED_PIN PINE7
#elif defined( _CEREBOTPLUS_BOARD_ ) || defined(_CEREBOT_II_BOARD_)
//* this is for the Cerebot 2560 board and the Cerebot-ii
//* onbarod leds are on PORTE4-7
#define PROGLED_PORT PORTE
#define PROGLED_DDR DDRE
#define PROGLED_PIN PINE7
#elif defined( _PENGUINO_ )
//* this is for the Penguino
//* onbarod led is PORTE4
#define PROGLED_PORT PORTC
#define PROGLED_DDR DDRC
#define PROGLED_PIN PINC6
#elif defined( _ANDROID_2561_ ) || defined( __AVR_ATmega2561__ )
//* this is for the Boston Android 2561
//* onbarod led is PORTE4
#define PROGLED_PORT PORTA
#define PROGLED_DDR DDRA
#define PROGLED_PIN PINA3
#elif defined( _BOARD_MEGA16 )
//* onbarod led is PORTA7
#define PROGLED_PORT PORTA
#define PROGLED_DDR DDRA
#define PROGLED_PIN PINA7
#define UART_BAUDRATE_DOUBLE_SPEED 0
#elif defined( _BOARD_BAHBOT_ )
//* dosent have an onboard LED but this is what will probably be added to this port
#define PROGLED_PORT PORTB
#define PROGLED_DDR DDRB
#define PROGLED_PIN PINB0
#elif defined( _BOARD_ROBOTX_ )
#define PROGLED_PORT PORTB
#define PROGLED_DDR DDRB
#define PROGLED_PIN PINB6
#elif defined( _BOARD_CUSTOM1284_BLINK_B0_ )
#define PROGLED_PORT PORTB
#define PROGLED_DDR DDRB
#define PROGLED_PIN PINB0
#elif defined( _BOARD_CUSTOM1284_ )
#define PROGLED_PORT PORTD
#define PROGLED_DDR DDRD
#define PROGLED_PIN PIND5
#elif defined( _AVRLIP_ )
#define PROGLED_PORT PORTB
#define PROGLED_DDR DDRB
#define PROGLED_PIN PINB5
#elif defined( _BOARD_STK500_ )
#define PROGLED_PORT PORTA
#define PROGLED_DDR DDRA
#define PROGLED_PIN PINA7
#elif defined( _BOARD_STK502_ )
#define PROGLED_PORT PORTB
#define PROGLED_DDR DDRB
#define PROGLED_PIN PINB5
#elif defined( _BOARD_STK525_ )
#define PROGLED_PORT PORTB
#define PROGLED_DDR DDRB
#define PROGLED_PIN PINB7
#else
#define PROGLED_PORT PORTG
#define PROGLED_DDR DDRG
#define PROGLED_PIN PING2
#endif
/*
* define CPU frequency in Mhz here if not defined in Makefile
*/
#ifndef F_CPU
#define F_CPU 16000000UL
#endif
#define _BLINK_LOOP_COUNT_ (F_CPU / 2250)
/*
* UART Baudrate, AVRStudio AVRISP only accepts 115200 bps
*/
#ifndef BAUDRATE
#define BAUDRATE 115200
#endif
/*
* Enable (1) or disable (0) USART double speed operation
*/
#ifndef UART_BAUDRATE_DOUBLE_SPEED
#if defined (__AVR_ATmega32__)
#define UART_BAUDRATE_DOUBLE_SPEED 0
#else
#define UART_BAUDRATE_DOUBLE_SPEED 1
#endif
#endif
/*
* HW and SW version, reported to AVRISP, must match version of AVRStudio
*/
#define CONFIG_PARAM_BUILD_NUMBER_LOW 0
#define CONFIG_PARAM_BUILD_NUMBER_HIGH 0
#define CONFIG_PARAM_HW_VER 0x0F
#define CONFIG_PARAM_SW_MAJOR 2
#define CONFIG_PARAM_SW_MINOR 0x0A
/*
* Calculate the address where the bootloader starts from FLASHEND and BOOTSIZE
* (adjust BOOTSIZE below and BOOTLOADER_ADDRESS in Makefile if you want to change the size of the bootloader)
*/
//#define BOOTSIZE 1024
#if FLASHEND > 0x0F000
#define BOOTSIZE 8192
#else
#define BOOTSIZE 2048
#endif
//#define APP_END (FLASHEND -(2*BOOTSIZE) + 1)
#define APP_END (FLASHEND -(BOOTSIZE) + 1)
/*
* Signature bytes are not available in avr-gcc io_xxx.h
*/
#if defined (__AVR_ATmega8__)
#define SIGNATURE_BYTES 0x1E9307
#elif defined (__AVR_ATmega16__)
#define SIGNATURE_BYTES 0x1E9403
#elif defined (__AVR_ATmega32__)
#define SIGNATURE_BYTES 0x1E9502
#elif defined (__AVR_ATmega8515__)
#define SIGNATURE_BYTES 0x1E9306
#elif defined (__AVR_ATmega8535__)
#define SIGNATURE_BYTES 0x1E9308
#elif defined (__AVR_ATmega162__)
#define SIGNATURE_BYTES 0x1E9404
#elif defined (__AVR_ATmega128__)
#define SIGNATURE_BYTES 0x1E9702
#elif defined (__AVR_ATmega1280__)
#define SIGNATURE_BYTES 0x1E9703
#elif defined (__AVR_ATmega2560__)
#define SIGNATURE_BYTES 0x1E9801
#elif defined (__AVR_ATmega2561__)
#define SIGNATURE_BYTES 0x1e9802
#elif defined (__AVR_ATmega1284P__)
#define SIGNATURE_BYTES 0x1e9705
#elif defined (__AVR_ATmega640__)
#define SIGNATURE_BYTES 0x1e9608
#elif defined (__AVR_ATmega64__)
#define SIGNATURE_BYTES 0x1E9602
#elif defined (__AVR_ATmega169__)
#define SIGNATURE_BYTES 0x1e9405
#elif defined (__AVR_AT90USB1287__)
#define SIGNATURE_BYTES 0x1e9782
#else
#error "no signature definition for MCU available"
#endif
#if defined(_BOARD_ROBOTX_) || defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB1286__)
#define UART_BAUD_RATE_LOW UBRR1L
#define UART_STATUS_REG UCSR1A
#define UART_CONTROL_REG UCSR1B
#define UART_ENABLE_TRANSMITTER TXEN1
#define UART_ENABLE_RECEIVER RXEN1
#define UART_TRANSMIT_COMPLETE TXC1
#define UART_RECEIVE_COMPLETE RXC1
#define UART_DATA_REG UDR1
#define UART_DOUBLE_SPEED U2X1
#elif defined(__AVR_ATmega8__) || defined(__AVR_ATmega16__) || defined(__AVR_ATmega32__) \
|| defined(__AVR_ATmega8515__) || defined(__AVR_ATmega8535__)
/* ATMega8 with one USART */
#define UART_BAUD_RATE_LOW UBRRL
#define UART_STATUS_REG UCSRA
#define UART_CONTROL_REG UCSRB
#define UART_ENABLE_TRANSMITTER TXEN
#define UART_ENABLE_RECEIVER RXEN
#define UART_TRANSMIT_COMPLETE TXC
#define UART_RECEIVE_COMPLETE RXC
#define UART_DATA_REG UDR
#define UART_DOUBLE_SPEED U2X
#elif defined(__AVR_ATmega64__) || defined(__AVR_ATmega128__) || defined(__AVR_ATmega162__) \
|| defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__)
/* ATMega with two USART, use UART0 */
#define UART_BAUD_RATE_LOW UBRR0L
#define UART_STATUS_REG UCSR0A
#define UART_CONTROL_REG UCSR0B
#define UART_ENABLE_TRANSMITTER TXEN0
#define UART_ENABLE_RECEIVER RXEN0
#define UART_TRANSMIT_COMPLETE TXC0
#define UART_RECEIVE_COMPLETE RXC0
#define UART_DATA_REG UDR0
#define UART_DOUBLE_SPEED U2X0
#elif defined(UBRR0L) && defined(UCSR0A) && defined(TXEN0)
/* ATMega with two USART, use UART0 */
#define UART_BAUD_RATE_LOW UBRR0L
#define UART_STATUS_REG UCSR0A
#define UART_CONTROL_REG UCSR0B
#define UART_ENABLE_TRANSMITTER TXEN0
#define UART_ENABLE_RECEIVER RXEN0
#define UART_TRANSMIT_COMPLETE TXC0
#define UART_RECEIVE_COMPLETE RXC0
#define UART_DATA_REG UDR0
#define UART_DOUBLE_SPEED U2X0
#elif defined(UBRRL) && defined(UCSRA) && defined(UCSRB) && defined(TXEN) && defined(RXEN)
//* catch all
#define UART_BAUD_RATE_LOW UBRRL
#define UART_STATUS_REG UCSRA
#define UART_CONTROL_REG UCSRB
#define UART_ENABLE_TRANSMITTER TXEN
#define UART_ENABLE_RECEIVER RXEN
#define UART_TRANSMIT_COMPLETE TXC
#define UART_RECEIVE_COMPLETE RXC
#define UART_DATA_REG UDR
#define UART_DOUBLE_SPEED U2X
#else
#error "no UART definition for MCU available"
#endif
/*
* Macro to calculate UBBR from XTAL and baudrate
*/
#if defined(__AVR_ATmega32__) && UART_BAUDRATE_DOUBLE_SPEED
#define UART_BAUD_SELECT(baudRate,xtalCpu) ((xtalCpu / 4 / baudRate - 1) / 2)
#elif defined(__AVR_ATmega32__)
#define UART_BAUD_SELECT(baudRate,xtalCpu) ((xtalCpu / 8 / baudRate - 1) / 2)
#elif UART_BAUDRATE_DOUBLE_SPEED
#define UART_BAUD_SELECT(baudRate,xtalCpu) (((float)(xtalCpu))/(((float)(baudRate))*8.0)-1.0+0.5)
#else
#define UART_BAUD_SELECT(baudRate,xtalCpu) (((float)(xtalCpu))/(((float)(baudRate))*16.0)-1.0+0.5)
#endif
#ifdef DUALSERIAL
// UART defines
#define UART_BAUD_RATE_LOW0 UBRR0L
#define UART_STATUS_REG0 UCSR0A
#define UART_CONTROL_REG0 UCSR0B
#define UART_ENABLE_TRANSMITTER0 TXEN0
#define UART_ENABLE_RECEIVER0 RXEN0
#define UART_TRANSMIT_COMPLETE0 TXC0
#define UART_RECEIVE_COMPLETE0 RXC0
#define UART_DATA_REG0 UDR0
#define UART_DOUBLE_SPEED0 U2X0
#define UART_BAUD_RATE_LOW2 UBRR2L
#define UART_STATUS_REG2 UCSR2A
#define UART_CONTROL_REG2 UCSR2B
#define UART_ENABLE_TRANSMITTER2 TXEN2
#define UART_ENABLE_RECEIVER2 RXEN2
#define UART_TRANSMIT_COMPLETE2 TXC2
#define UART_RECEIVE_COMPLETE2 RXC2
#define UART_DATA_REG2 UDR2
#define UART_DOUBLE_SPEED2 U2X2
#endif //DUALSERIAL
#define UART_BAUD_SELECT(baudRate,xtalCpu) (((float)(xtalCpu))/(((float)(baudRate))*8.0)-1.0+0.5)
/*
* States used in the receive state machine
*/
#define ST_START 0
#define ST_GET_SEQ_NUM 1
#define ST_MSG_SIZE_1 2
#define ST_MSG_SIZE_2 3
#define ST_GET_TOKEN 4
#define ST_GET_DATA 5
#define ST_GET_CHECK 6
#define ST_PROCESS 7
/*
* use 16bit address variable for ATmegas with <= 64K flash
*/
#if defined(RAMPZ)
typedef uint32_t address_t;
#else
typedef uint16_t address_t;
#endif
/*
* function prototypes
*/
static void sendchar(char c);
//static unsigned char recchar(void);
#ifdef DUALSERIAL
int selectedSerial;
#endif //DUALSERIAL
/*
* since this bootloader is not linked against the avr-gcc crt1 functions,
* to reduce the code size, we need to provide our own initialization
*/
void __jumpMain (void) __attribute__ ((naked)) __attribute__ ((section (".init9")));
#include <avr/sfr_defs.h>
//#define SPH_REG 0x3E
//#define SPL_REG 0x3D
#define STACK_TOP (RAMEND - 16)
//*****************************************************************************
void __jumpMain(void)
{
//* July 17, 2010 <MLS> Added stack pointer initialzation
//* the first line did not do the job on the ATmega128
asm volatile ( ".set __stack, %0" :: "i" (STACK_TOP) );
//* set stack pointer to top of RAM
asm volatile ( "ldi 16, %0" :: "i" (STACK_TOP >> 8) );
asm volatile ( "out %0,16" :: "i" (AVR_STACK_POINTER_HI_ADDR) );
asm volatile ( "ldi 16, %0" :: "i" (STACK_TOP & 0x0ff) );
asm volatile ( "out %0,16" :: "i" (AVR_STACK_POINTER_LO_ADDR) );
asm volatile ( "clr __zero_reg__" ); // GCC depends on register r1 set to 0
asm volatile ( "out %0, __zero_reg__" :: "I" (_SFR_IO_ADDR(SREG)) ); // set SREG to 0
asm volatile ( "jmp main"); // jump to main()
}
//*****************************************************************************
void delay_ms(unsigned int timedelay)
{
unsigned int i;
for (i=0;i<timedelay;i++)
{
_delay_ms(0.5);
}
}
/*
void lcd_print_hex_nibble(uint8_t val)
{
lcd_putc((val > 9)?('A' + val - 10):('0' + val));
}
void lcd_print_hex_byte(uint8_t val)
{
lcd_print_hex_nibble(val >> 4);
lcd_print_hex_nibble(val & 0xf);
}
void lcd_print_hex_word(uint16_t val)
{
lcd_print_hex_byte(val >> 8);
lcd_print_hex_byte(val & 0xff);
}
void lcd_print_hex_dword(uint32_t val)
{
lcd_print_hex_word(val >> 16);
lcd_print_hex_word(val & 0xffff);
}
/**/
/*
const unsigned long ulFlashEnd = FLASHEND;
const unsigned long ulRamEnd = RAMEND;
const unsigned long ulBootSize = BOOTSIZE;
const unsigned long ulAppEnd = APP_END;
*/
//*****************************************************************************
/*
* send single byte to USART, wait until transmission is completed
*/
static void sendchar(char c)
{
#ifdef DUALSERIAL
if (selectedSerial == 0)
{
UART_DATA_REG0 = c; // prepare transmission
while (!(UART_STATUS_REG0 & (1 << UART_TRANSMIT_COMPLETE0))); // wait until byte sent
UART_STATUS_REG0 |= (1 << UART_TRANSMIT_COMPLETE0); // delete TXCflag
}
else if (selectedSerial == 2)
{
UART_DATA_REG2 = c; // prepare transmission
while (!(UART_STATUS_REG2 & (1 << UART_TRANSMIT_COMPLETE2))); // wait until byte sent
UART_STATUS_REG2 |= (1 << UART_TRANSMIT_COMPLETE2); // delete TXCflag
}
#else //DUALSERIAL
UART_DATA_REG = c; // prepare transmission
while (!(UART_STATUS_REG & (1 << UART_TRANSMIT_COMPLETE))); // wait until byte sent
UART_STATUS_REG |= (1 << UART_TRANSMIT_COMPLETE); // delete TXCflag
#endif //DUALSERIAL
}
//************************************************************************
#ifdef DUALSERIAL
static int Serial_Available(int serial)
{
if (serial == 0)
return (UART_STATUS_REG0 & (1 << UART_RECEIVE_COMPLETE0)); // wait for data
else if (serial == 2)
return (UART_STATUS_REG2 & (1 << UART_RECEIVE_COMPLETE2)); // wait for data
return 0;
}
#else //DUALSERIAL
static int Serial_Available(void)
{
return (UART_STATUS_REG & (1 << UART_RECEIVE_COMPLETE)); // wait for data
}
#endif //DUALSERIAL
//*****************************************************************************
/*
* Read single byte from USART, block if no data available
*/
/*static unsigned char recchar(void)
{
#ifdef DUALSERIAL
if (selectedSerial == 0)
{
while (!(UART_STATUS_REG0 & (1 << UART_RECEIVE_COMPLETE0))) { } // wait for data
return UART_DATA_REG0;
}
else if (selectedSerial == 2)
{
while (!(UART_STATUS_REG2 & (1 << UART_RECEIVE_COMPLETE2))) { } // wait for data
return UART_DATA_REG2;
}
return 0;
#else //DUALSERIAL
while (!(UART_STATUS_REG & (1 << UART_RECEIVE_COMPLETE))) { } // wait for data
return UART_DATA_REG;
#endif //DUALSERIAL
}*/
#define MAX_TIME_COUNT (F_CPU >> 1)
//*****************************************************************************
static unsigned char recchar_timeout(void)
{
uint32_t count = 0;
#ifdef DUALSERIAL
while (1)
{
if ((selectedSerial == 0) && (UART_STATUS_REG0 & (1 << UART_RECEIVE_COMPLETE0))) break;
else if ((selectedSerial == 2) && (UART_STATUS_REG2 & (1 << UART_RECEIVE_COMPLETE2))) break;
count++;
if (count > MAX_TIME_COUNT)
{
unsigned int data;
#if (FLASHEND > 0x10000)
data = pgm_read_word_far(0); //* get the first word of the user program
#else
data = pgm_read_word_near(0); //* get the first word of the user program
#endif
if (data != 0xffff) //* make sure its valid before jumping to it.
{
asm volatile(
"clr r30 \n\t"
"clr r31 \n\t"
"ijmp \n\t"
);
}
count = 0;
}
}
if (selectedSerial == 0) return UART_DATA_REG0;
else if (selectedSerial == 2) return UART_DATA_REG2;
return 0;
#else //DUALSERIAL
while (!(UART_STATUS_REG & (1 << UART_RECEIVE_COMPLETE)))
{
// wait for data
count++;
if (count > MAX_TIME_COUNT)
{
unsigned int data;
#if (FLASHEND > 0x10000)
data = pgm_read_word_far(0); //* get the first word of the user program
#else
data = pgm_read_word_near(0); //* get the first word of the user program
#endif
if (data != 0xffff) //* make sure its valid before jumping to it.
{
asm volatile(
"clr r30 \n\t"
"clr r31 \n\t"
"ijmp \n\t"
);
}
count = 0;
}
}
return UART_DATA_REG;
#endif //DUALSERIAL
}
#ifdef DUALSERIAL
void initUart()
{
// init uart0
UART_STATUS_REG0 |= (1 <<UART_DOUBLE_SPEED0);
UART_BAUD_RATE_LOW0 = UART_BAUD_SELECT(BAUDRATE,F_CPU);
UART_CONTROL_REG0 = (1 << UART_ENABLE_RECEIVER0) | (1 << UART_ENABLE_TRANSMITTER0);
// init uart2
UART_STATUS_REG2 |= (1 <<UART_DOUBLE_SPEED2);
UART_BAUD_RATE_LOW2 = UART_BAUD_SELECT(BAUDRATE,F_CPU);
UART_CONTROL_REG2 = (1 << UART_ENABLE_RECEIVER2) | (1 << UART_ENABLE_TRANSMITTER2);
}
#endif //DUALSERIAL
/*void sendHello() {
sendchar('H');
sendchar('e');
sendchar('l');
sendchar('l');
sendchar('o');
sendchar('!');
sendchar('\n');
}*/
#ifdef EINSYBOARD
void blinkBootLed(int state)
{
if (state == 1)
PORTB = 0b10000000;
else
PORTB = 0b00000000;
}
//Heaters off (PG5=0, PE5=0)
//Fans on (PH5=1, PH3=1)
//Motors off (PA4..7=1)
void pinsToDefaultState()
{
/*
DDRG = 0b00001000;
DDRE = 0b00001000;
DDRH = 0b00101000;
DDRA = 0b00011110;
DDRB = 0b10000000;
PORTH = 0b00101000;
PORTG = 0b00000000;
PORTE = 0b00000000;
PORTA = 0b00000000;*/ //original code
DDRA |= 0b11110000; //PA4..7 out
PORTA |= 0b11110000; //PA4..7 = 1
DDRE |= 0b00100000; //PE5 out
PORTE &= 0b11011111; //PE5 = 0
DDRG |= 0b00100000; //PG5 out
PORTG &= 0b11011111; //PG5 = 0
DDRH |= 0b00101000; //PH5, PH3 out
PORTH |= 0b00101000; //PH5, PH3 = 1
}
#endif //EINSYBOARD
//* for watch dog timer startup
//void (*app_start)(void) = 0x0000;
unsigned long flashSize = 0; //flash data size in bytes
unsigned long flashCounter = 0; //flash counter (readed / written bytes)
address_t flashAddressLast = 0; //last written flash address
int flashOperation = 0; //current flash operation (0-nothing, 1-write, 2-verify)
#define RAMSIZE 0x2000
#define boot_src_addr (*((uint32_t*)(RAMSIZE - 16)))
#define boot_dst_addr (*((uint32_t*)(RAMSIZE - 12)))
#define boot_copy_size (*((uint16_t*)(RAMSIZE - 8)))
#define boot_reserved (*((uint8_t*)(RAMSIZE - 6)))
#define boot_app_flags (*((uint8_t*)(RAMSIZE - 5)))
#define boot_app_magic (*((uint32_t*)(RAMSIZE - 4)))
#define BOOT_APP_FLG_ERASE 0x01
#define BOOT_APP_FLG_COPY 0x02
#define BOOT_APP_FLG_FLASH 0x04
//*****************************************************************************
int main(void)
{
address_t address = 0;
address_t eraseAddress = 0;
unsigned char msgParseState;
unsigned int ii = 0;
unsigned char checksum = 0;
unsigned char seqNum = 0;
unsigned int msgLength = 0;
unsigned char msgBuffer[285];
unsigned char c, *p;
unsigned char isLeave = 0;
unsigned long boot_timeout;
unsigned long boot_timer;
unsigned int boot_state;
//* some chips dont set the stack properly
// this is already done in __jumpMain
/* asm volatile ( ".set __stack, %0" :: "i" (RAMEND) );
asm volatile ( "ldi 16, %0" :: "i" (RAMEND >> 8) );
asm volatile ( "out %0,16" :: "i" (AVR_STACK_POINTER_HI_ADDR) );
asm volatile ( "ldi 16, %0" :: "i" (RAMEND & 0x0ff) );
asm volatile ( "out %0,16" :: "i" (AVR_STACK_POINTER_LO_ADDR) );*/
#ifdef _FIX_ISSUE_181_
//************************************************************************
//* Dec 29, 2011 <MLS> Issue #181, added watch dog timmer support
//* handle the watch dog timer
uint8_t mcuStatusReg;
mcuStatusReg = MCUSR;
__asm__ __volatile__ ("cli");
__asm__ __volatile__ ("wdr");
MCUSR = 0;
WDTCSR |= _BV(WDCE) | _BV(WDE);
WDTCSR = 0;
__asm__ __volatile__ ("sei");
// check if WDT generated the reset, if so, go straight to app
if (mcuStatusReg & _BV(WDRF))
{
if (boot_app_magic == 0x55aa55aa)
{
/// uint16_t tmp_boot_copy_size = boot_copy_size;
/// uint32_t tmp_boot_src_addr = boot_src_addr;
address = boot_dst_addr;
address_t pageAddress = address;
while (boot_copy_size)
{
if (boot_app_flags & BOOT_APP_FLG_ERASE)
{
boot_page_erase(pageAddress);
boot_spm_busy_wait();
}
pageAddress += SPM_PAGESIZE;
if ((boot_app_flags & BOOT_APP_FLG_COPY))
{
while (boot_copy_size && (address < pageAddress))
{
uint16_t word = 0x0000;
if (boot_app_flags & BOOT_APP_FLG_FLASH)
word = pgm_read_word_far(boot_src_addr); //from FLASH
else
word = *((uint16_t*)boot_src_addr); //from RAM
boot_page_fill(address, word);
address += 2;
boot_src_addr += 2;
if (boot_copy_size > 2)
boot_copy_size -= 2;
else
boot_copy_size = 0;
}
boot_page_write(pageAddress - SPM_PAGESIZE);
boot_spm_busy_wait();
boot_rww_enable();
}
else
{
address += SPM_PAGESIZE;
if (boot_copy_size > SPM_PAGESIZE)
boot_copy_size -= SPM_PAGESIZE;
else
boot_copy_size = 0;
}
}
/// boot_copy_size = tmp_boot_copy_size;
/// boot_src_addr = tmp_boot_src_addr;
}
goto exit;
// original implementation app_start() does not work
// app_start();
}
//************************************************************************
#endif
boot_timer = 0;
boot_state = 0;
#ifdef BLINK_LED_WHILE_WAITING
// boot_timeout = 90000; //* should be about 4 seconds
// boot_timeout = 170000;
boot_timeout = 20000; //* should be about 1 second
#else
boot_timeout = 3500000; // 7 seconds , approx 2us per step when optimize "s"
#endif
/*
* Branch to bootloader or application code ?
*/
#ifdef DUALSERIAL
selectedSerial = 0;
#endif //DUALSERIAL
#ifndef REMOVE_BOOTLOADER_LED
/* PROG_PIN pulled low, indicate with LED that bootloader is active */
PROGLED_DDR |= (1<<PROGLED_PIN);
// PROGLED_PORT &= ~(1<<PROGLED_PIN); // active low LED ON
PROGLED_PORT |= (1<<PROGLED_PIN); // active high LED ON
#endif
/*
* Init UART
* set baudrate and enable USART receiver and transmiter without interrupts
*/
#if UART_BAUDRATE_DOUBLE_SPEED
UART_STATUS_REG |= (1 <<UART_DOUBLE_SPEED);
#endif
UART_BAUD_RATE_LOW = UART_BAUD_SELECT(BAUDRATE,F_CPU);
UART_CONTROL_REG = (1 << UART_ENABLE_RECEIVER) | (1 << UART_ENABLE_TRANSMITTER);
asm volatile ("nop"); // wait until port has changed
#ifdef EINSYBOARD
pinsToDefaultState();
blinkBootLed(1);
#endif //EINSYBOARD
#ifdef DUALSERIAL
initUart();
#endif //DUALSERIAL
#ifdef LCD_HD44780
lcd_init();
lcd_clrscr();
lcd_goto(0);
/* if (boot_app_magic == 0x55aa55aa)
{
lcd_print_hex_dword(boot_src_addr);
lcd_putc(' ');
lcd_print_hex_dword(boot_dst_addr);
lcd_goto(42);
lcd_print_hex_word(boot_copy_size);
lcd_putc(' ');
lcd_print_hex_word(boot_app_flags);
lcd_putc(' ');
lcd_print_hex_dword(boot_app_magic);
boot_app_magic = 0x00000000;
while(1);
}*/
/* lcd_puts("B");
lcd_goto(21);
lcd_puts("Original Prusa i3");
lcd_goto(47);
lcd_puts("Prusa Research");*/
lcd_goto(65);
lcd_puts("Original Prusa i3");
lcd_goto(23);
lcd_puts("Prusa Research");
// lcd_goto(90);
// lcd_puts("boot... ...");
lcd_goto(101);
lcd_puts("...");
#endif //LCD_HD44780
#ifdef EINSYBOARD
blinkBootLed(0);
#endif //EINSYBOARD
uint16_t animationTimer = 0;
uint16_t animationFrame = 0;
while (boot_state==0)
{
#ifdef DUALSERIAL
while ((!(Serial_Available(0))) && (!(Serial_Available(2))) && (boot_state == 0)) // wait for data
{
_delay_ms(0.001);
boot_timer++;
if (boot_timer > boot_timeout)
{
boot_state = 1; // (after ++ -> boot_state=2 bootloader timeout, jump to main 0x00000 )
}
#ifdef BLINK_LED_WHILE_WAITING
if ((boot_timer % _BLINK_LOOP_COUNT_) == 0)
{
//* toggle the LED
PROGLED_PORT ^= (1<<PROGLED_PIN); // turn LED ON
}
#endif
}
if (Serial_Available(2))
selectedSerial = 2;
#else //DUALSERIAL
while ((!(Serial_Available())) && (boot_state == 0)) // wait for data
{
_delay_ms(0.001);
boot_timer++;
if (boot_timer > boot_timeout)
{
boot_state = 1; // (after ++ -> boot_state=2 bootloader timeout, jump to main 0x00000 )
}
#ifdef BLINK_LED_WHILE_WAITING
if ((boot_timer % _BLINK_LOOP_COUNT_) == 0)
{
//* toggle the LED
PROGLED_PORT ^= (1<<PROGLED_PIN); // turn LED ON
}
#endif
}
#endif //DUALSERIAL
boot_state++; // ( if boot_state=1 bootloader received byte from UART, enter bootloader mode)
}
int messageShown = 0;
if (boot_state==1)
{
//* main loop
while (!isLeave)
{
/*
* Collect received bytes to a complete message
*/
msgParseState = ST_START;
while ( msgParseState != ST_PROCESS )
{
if (boot_state==1)
{
boot_state = 0;
c = UART_DATA_REG;
}
else
{
// c = recchar();
c = recchar_timeout();
}
switch (msgParseState)
{
case ST_START:
if ( c == MESSAGE_START )
{
msgParseState = ST_GET_SEQ_NUM;
checksum = MESSAGE_START^0;
}
break;
case ST_GET_SEQ_NUM:
#ifdef _FIX_ISSUE_505_
seqNum = c;
msgParseState = ST_MSG_SIZE_1;
checksum ^= c;
#else
if ( (c == 1) || (c == seqNum) )
{
seqNum = c;
msgParseState = ST_MSG_SIZE_1;
checksum ^= c;
}
else
{
msgParseState = ST_START;
}
#endif
break;
case ST_MSG_SIZE_1:
msgLength = c<<8;
msgParseState = ST_MSG_SIZE_2;
checksum ^= c;
break;
case ST_MSG_SIZE_2:
msgLength |= c;
msgParseState = ST_GET_TOKEN;
checksum ^= c;
break;
case ST_GET_TOKEN:
if ( c == TOKEN )
{
msgParseState = ST_GET_DATA;
checksum ^= c;
ii = 0;
}
else
{
msgParseState = ST_START;
}
break;
case ST_GET_DATA:
msgBuffer[ii++] = c;
checksum ^= c;
if (ii == msgLength )
{
msgParseState = ST_GET_CHECK;
}
break;
case ST_GET_CHECK:
if ( c == checksum )
{
msgParseState = ST_PROCESS;
}
else
{
msgParseState = ST_START;
}
break;
} // switch
} // while(msgParseState)
#ifdef LCD_HD44780
if (messageShown == 0)
{
lcd_clrscr();
lcd_goto(20);
lcd_puts(" Do not disconnect!");
lcd_goto(45);
lcd_puts(" Upgrading firmware");
messageShown = 1;
}
#endif //LCD_HD44780
#ifdef LCD_HD44780_ANIMATION
if (flashSize == 0)
{
animationTimer++;
if (animationTimer > 10)
{
animationTimer = 0;
animationFrame++;
if (animationFrame > 5) animationFrame = 0;
lcd_goto(91);
lcd_puts("| |");
lcd_goto((animationFrame <= 3)?(92 + animationFrame):(98 - animationFrame));
lcd_putc('*');
}
}
#endif //LCD_HD44780_ANIMATION
#ifdef LCD_HD44780_COUNTER
if ((flashSize != 0) && flashOperation)
{
if (flashOperation == 1) //write
{
lcd_goto(88);
lcd_puts("write ");
}
if (flashOperation == 2) //verify
{
lcd_goto(87);
lcd_puts("verify ");
}
int progress = 100 * flashCounter / flashSize;
char text[4] = " ";
for (int i = 2; i >= 0; i--)
if (progress > 0)
{
text[i] = '0' + (progress % 10);
progress /= 10;
}
else
text[i] = ' ';
lcd_puts(text);
lcd_putc('%');
}
#endif //LCD_HD44780_COUNTER
/*
* Now process the STK500 commands, see Atmel Appnote AVR068
*/
switch (msgBuffer[0])
{
#ifndef REMOVE_CMD_SPI_MULTI
case CMD_SPI_MULTI:
{
unsigned char answerByte;
unsigned char flag=0;
if ( msgBuffer[4]== 0x30 )
{
unsigned char signatureIndex = msgBuffer[6];
if ( signatureIndex == 0 )
{
answerByte = (SIGNATURE_BYTES >> 16) & 0x000000FF;
}
else if ( signatureIndex == 1 )
{
answerByte = (SIGNATURE_BYTES >> 8) & 0x000000FF;
}
else
{
answerByte = SIGNATURE_BYTES & 0x000000FF;
}
}
else if ( msgBuffer[4] & 0x50 )
{
//* Issue 544: stk500v2 bootloader doesn't support reading fuses
//* I cant find the docs that say what these are supposed to be but this was figured out by trial and error
// answerByte = boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS);
// answerByte = boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS);
// answerByte = boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS);
if (msgBuffer[4] == 0x50)
{
answerByte = boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS);
}
else if (msgBuffer[4] == 0x58)
{
answerByte = boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS);
}
else
{
answerByte = 0;
}
}
else
{
answerByte = 0; // for all others command are not implemented, return dummy value for AVRDUDE happy <Worapoht>
}
if ( !flag )
{
msgLength = 7;
msgBuffer[1] = STATUS_CMD_OK;
msgBuffer[2] = 0;
msgBuffer[3] = msgBuffer[4];
msgBuffer[4] = 0;
msgBuffer[5] = answerByte;
msgBuffer[6] = STATUS_CMD_OK;
}
}
break;
#endif
case CMD_SIGN_ON:
msgLength = 11;
msgBuffer[1] = STATUS_CMD_OK;
msgBuffer[2] = 8;
msgBuffer[3] = 'A';
msgBuffer[4] = 'V';
msgBuffer[5] = 'R';
msgBuffer[6] = 'I';
msgBuffer[7] = 'S';
msgBuffer[8] = 'P';
msgBuffer[9] = '_';
msgBuffer[10] = '2';
break;
case CMD_GET_PARAMETER:
{
unsigned char value;
switch(msgBuffer[1])
{
case PARAM_BUILD_NUMBER_LOW:
value = CONFIG_PARAM_BUILD_NUMBER_LOW;
break;
case PARAM_BUILD_NUMBER_HIGH:
value = CONFIG_PARAM_BUILD_NUMBER_HIGH;
break;
case PARAM_HW_VER:
value = CONFIG_PARAM_HW_VER;
break;
case PARAM_SW_MAJOR:
value = CONFIG_PARAM_SW_MAJOR;
break;
case PARAM_SW_MINOR:
value = CONFIG_PARAM_SW_MINOR;
break;
default:
value = 0;
break;
}
msgLength = 3;
msgBuffer[1] = STATUS_CMD_OK;
msgBuffer[2] = value;
}
break;
case CMD_LEAVE_PROGMODE_ISP:
isLeave = 1;
//* fall thru
case CMD_SET_PARAMETER:
case CMD_ENTER_PROGMODE_ISP:
msgLength = 2;
msgBuffer[1] = STATUS_CMD_OK;
break;
case CMD_READ_SIGNATURE_ISP:
{
unsigned char signatureIndex = msgBuffer[4];
unsigned char signature;
if ( signatureIndex == 0 )
signature = (SIGNATURE_BYTES >>16) & 0x000000FF;
else if ( signatureIndex == 1 )
signature = (SIGNATURE_BYTES >> 8) & 0x000000FF;
else
signature = SIGNATURE_BYTES & 0x000000FF;
msgLength = 4;
msgBuffer[1] = STATUS_CMD_OK;
msgBuffer[2] = signature;
msgBuffer[3] = STATUS_CMD_OK;
}
break;
case CMD_READ_LOCK_ISP:
msgLength = 4;
msgBuffer[1] = STATUS_CMD_OK;
msgBuffer[2] = boot_lock_fuse_bits_get( GET_LOCK_BITS );
msgBuffer[3] = STATUS_CMD_OK;
break;
case CMD_READ_FUSE_ISP:
{
unsigned char fuseBits;
if ( msgBuffer[2] == 0x50 )
{
if ( msgBuffer[3] == 0x08 )
fuseBits = boot_lock_fuse_bits_get( GET_EXTENDED_FUSE_BITS );
else
fuseBits = boot_lock_fuse_bits_get( GET_LOW_FUSE_BITS );
}
else
{
fuseBits = boot_lock_fuse_bits_get( GET_HIGH_FUSE_BITS );
}
msgLength = 4;
msgBuffer[1] = STATUS_CMD_OK;
msgBuffer[2] = fuseBits;
msgBuffer[3] = STATUS_CMD_OK;
}
break;
#ifndef REMOVE_PROGRAM_LOCK_BIT_SUPPORT
case CMD_PROGRAM_LOCK_ISP:
{
unsigned char lockBits = msgBuffer[4];
lockBits = (~lockBits) & 0x3C; // mask BLBxx bits
boot_lock_bits_set(lockBits); // and program it
boot_spm_busy_wait();
msgLength = 3;
msgBuffer[1] = STATUS_CMD_OK;
msgBuffer[2] = STATUS_CMD_OK;
}
break;
#endif
case CMD_CHIP_ERASE_ISP:
eraseAddress = 0;
msgLength = 2;
// msgBuffer[1] = STATUS_CMD_OK;
msgBuffer[1] = STATUS_CMD_FAILED; //* isue 543, return FAILED instead of OK
break;
case CMD_LOAD_ADDRESS:
#if defined(RAMPZ)
address = ( ((address_t)(msgBuffer[1])<<24)|((address_t)(msgBuffer[2])<<16)|((address_t)(msgBuffer[3])<<8)|(msgBuffer[4]) )<<1;
#else
address = ( ((msgBuffer[3])<<8)|(msgBuffer[4]) )<<1; //convert word to byte address
#endif
msgLength = 2;
msgBuffer[1] = STATUS_CMD_OK;
break;
case CMD_SET_UPLOAD_SIZE_PRUSA3D:
((unsigned char*)&flashSize)[0] = msgBuffer[1];
((unsigned char*)&flashSize)[1] = msgBuffer[2];
((unsigned char*)&flashSize)[2] = msgBuffer[3];
((unsigned char*)&flashSize)[3] = 0;
msgLength = 2;
msgBuffer[1] = STATUS_CMD_OK;
break;
case CMD_PROGRAM_FLASH_ISP:
case CMD_PROGRAM_EEPROM_ISP:
{
unsigned int size = ((msgBuffer[1])<<8) | msgBuffer[2];
unsigned char *p = msgBuffer+10;
unsigned int data;
unsigned char highByte, lowByte;
address_t tempaddress = address;
if ( msgBuffer[0] == CMD_PROGRAM_FLASH_ISP )
{
if (flashSize != 0)
{
if (address == 0) //first page
{
flashCounter = size; //initial value = size
flashAddressLast = 0; //last
flashOperation = 1; //write
}
else if (address != flashAddressLast)
flashCounter += size; //add size to counter
flashAddressLast = address;
}
// erase only main section (bootloader protection)
if (eraseAddress < APP_END ) //erase and write only blocks with address less 0x3e000
{ //because prevent "brick"
boot_page_erase(eraseAddress); // Perform page erase
boot_spm_busy_wait(); // Wait until the memory is erased.
eraseAddress += SPM_PAGESIZE; // point to next page to be erase
}
if (address < APP_END)
{
/* Write FLASH */
do {
lowByte = *p++;
highByte = *p++;
data = (highByte << 8) | lowByte;
boot_page_fill(address,data);
address = address + 2; // Select next word in memory
size -= 2; // Reduce number of bytes to write by two
} while (size); // Loop until all bytes written
boot_page_write(tempaddress);
boot_spm_busy_wait();
boot_rww_enable(); // Re-enable the RWW section
}
}
else
{
//* issue 543, this should work, It has not been tested.
uint16_t ii = address >> 1;
/* write EEPROM */
while (size) {
eeprom_write_byte((uint8_t*)ii, *p++);
address+=2; // Select next EEPROM byte
ii++;
size--;
}
}
msgLength = 2;
msgBuffer[1] = STATUS_CMD_OK;
}
break;
case CMD_READ_FLASH_ISP:
case CMD_READ_EEPROM_ISP:
{
unsigned int size = ((msgBuffer[1])<<8) | msgBuffer[2];
unsigned char *p = msgBuffer+1;
msgLength = size+3;
*p++ = STATUS_CMD_OK;
if (msgBuffer[0] == CMD_READ_FLASH_ISP )
{
if (flashSize != 0)
{
if ((address == 0x00000) && (flashOperation == 1))
{
flashOperation = 2; //verify
flashCounter = size; //initial value = size
}
else
flashCounter += size; //add size to counter
}
unsigned int data;
// Read FLASH
do {
//#if defined(RAMPZ)
#if (FLASHEND > 0x10000)
data = pgm_read_word_far(address);
#else
data = pgm_read_word_near(address);
#endif
*p++ = (unsigned char)data; //LSB
*p++ = (unsigned char)(data >> 8); //MSB
address += 2; // Select next word in memory
size -= 2;
}while (size);
}
else
{
/* Read EEPROM */
do {
EEARL = address; // Setup EEPROM address
EEARH = ((address >> 8));
address++; // Select next EEPROM byte
EECR |= (1<<EERE); // Read EEPROM
*p++ = EEDR; // Send EEPROM data
size--;
} while (size);
}
*p++ = STATUS_CMD_OK;
}
break;
default:
msgLength = 2;
msgBuffer[1] = STATUS_CMD_FAILED;
break;
}
/*
* Now send answer message back
*/
sendchar(MESSAGE_START);
checksum = MESSAGE_START^0;
sendchar(seqNum);
checksum ^= seqNum;
c = ((msgLength>>8)&0xFF);
sendchar(c);
checksum ^= c;
c = msgLength&0x00FF;
sendchar(c);
checksum ^= c;
sendchar(TOKEN);
checksum ^= TOKEN;
p = msgBuffer;
while ( msgLength )
{
c = *p++;
sendchar(c);
checksum ^=c;
msgLength--;
}
sendchar(checksum);
seqNum++;
#ifndef REMOVE_BOOTLOADER_LED
//* <MLS> toggle the LED
PROGLED_PORT ^= (1<<PROGLED_PIN); // active high LED ON
#endif
}
}
#ifndef REMOVE_BOOTLOADER_LED
PROGLED_DDR &= ~(1<<PROGLED_PIN); // set to default
PROGLED_PORT &= ~(1<<PROGLED_PIN); // active low LED OFF
// PROGLED_PORT |= (1<<PROGLED_PIN); // active high LED OFf
delay_ms(100); // delay after exit
#endif
exit:
asm volatile ("nop"); // wait until port has changed
/*
* Now leave bootloader
*/
UART_STATUS_REG &= 0xfd;
boot_rww_enable(); // enable application section
asm volatile(
"clr r30 \n\t"
"clr r31 \n\t"
"ijmp \n\t"
);
// asm volatile ( "push r1" "\n\t" // Jump to Reset vector in Application Section
// "push r1" "\n\t"
// "ret" "\n\t"
// ::);
/*
* Never return to stop GCC to generate exit return code
* Actually we will never reach this point, but the compiler doesn't
* understand this
*/
for(;;);
}
/*
base address = f800
avrdude: Device signature = 0x1e9703
avrdude: safemode: lfuse reads as FF
avrdude: safemode: hfuse reads as DA
avrdude: safemode: efuse reads as F5
avrdude>
base address = f000
avrdude: Device signature = 0x1e9703
avrdude: safemode: lfuse reads as FF
avrdude: safemode: hfuse reads as D8
avrdude: safemode: efuse reads as F5
avrdude>
*/
//************************************************************************